lunes, 4 de abril de 2016

HARDWARE.


El término hardware se refiere a todas las partes físicas de un sistema informatico; sus componentes son: eléctricos, electrónicos, electromecánicos y mecánicos. Son cables, gabinetes o cajas, perifericos de todo tipo y cualquier otro elemento físico involucrado; contrariamente, el soporte lógico es intangible y es llamado sofware.

   



Hardware típico de una computadora personal:

  1.  Monitor.
  2.  Placa principal.
  3.  Microprocesador (CPU) y zócalo.
  4.  RAM y tres ranuras.
  5.  tarjetas de expansión y  tres ranuras.
  6.  Fuente de alimentación.
  7.  Unidad de disco óptico (CD; DVD; BD).
  8.  Unidad de disco duro ó unidad de  estado sólido.
  9.  Teclado.
  10.  Ratón.









Una de las formas de clasificar el hardware es en dos categorías: por un lado, el básico, que abarca el conjunto de componentes indispensables necesarios para otorgar la funcionalidad mínima a una computadora; y por otro lado, el hardware complementario, que, como su nombre indica, es el utilizado para realizar funciones específicas (más allá de las básicas), no estrictamente necesarias para el funcionamiento de la computadora.

MONITOR O PANTALLA.


El monitor de computadora (en Hispanoamérica) o pantalla del ordenador(en España) es el principal dispositivo de salida (interfaz), que muestra datos o información al usuario. También puede considerarse un periférico de Entrada/Salida si el monitor tiene pantalla táctil o multitáctil.
Básicamente, los monitores pueden clasificarse en dos tipos generales:
1.     Monitor de “pantalla curva” o CRT
2.     Monitor de pantalla plana: LCD, TFT, LED, PDP



2.1Historia del monitor.

Las primeras computadoras se comunicaban con el operador mediante unas pequeñas luces, que se encendían o se apagaban al acceder a determinadas posiciones de memoria o ejecutar ciertas instrucciones.
Años más tarde aparecieron ordenadores que funcionaban con tarjeta perforada, que permitían introducir programas en el computador. Durante los años 60, la forma más común de interactuar con un computador era mediante un teletipo, que se conectaba directamente a este e imprimía todos los datos de una sesión informática. Fue la forma más barata de visualizar los resultados hasta la década de los 70, cuando empezaron a aparecer los primeros monitores de CRT (tubo de rayos catódicos). Seguían el estándar MDA (Monochrome Display Adapter), y eran monitores monocromáticos (de un solo color) de IBM.


Estaban expresamente diseñados para modo texto y soportaban subrayado, negrita, cursiva, normal e invisibilidad para textos. Poco después y en el mismo año salieron los monitores CGA (Color Graphics Adapter –gráficos adaptados a color–) fueron comercializados en 1981 al desarrollarse la primera tarjeta gráfica a partir del estándar CGA de IBM. Al comercializarse a la vez que los MDA los usuarios de PC optaban por comprar el monitor monocromático por su costo.


2.2Parámetros de una pantalla

 Píxel: unidad mínima representable en un monitor. Los monitores pueden presentar píxeles muertos o atascados. Se notan porque aparecen en blanco. Más común en portátiles.
Tamaño de punto o (dot pitch): el tamaño de punto es el espacio entre dos fósforos coloreados de un píxel. Es un parámetro que mide la nitidez de la imagen, midiendo la distancia entre dos puntos del mismo color; resulta fundamental a grandes resoluciones. Los tamaños de punto más pequeños producen imágenes más uniformes. Un monitor de 14 pulgadas suele tener un tamaño de punto de 0,28 mm o menos. En ocasiones es diferente en vertical que en horizontal, o se trata de un valor medio, dependiendo de la disposición particular de los puntos de color en la pantalla, así como del tipo de rejilla empleada para dirigir los haces de electrones. En LCD y en CRT de apertura de rejilla, es la distancia en horizontal, mientras que en los CRT de máscara de sombra, se mide casi en diagonal. Lo mínimo exigible en este momento es que sea de 0,28mm. Para CAD o en general para diseño, lo ideal sería de 0,25 mm o menor. 0,21 en máscara de sombra es el equivalente a 0.24 en apertura de rejilla.
Área útil: el tamaño de la pantalla no coincide con el área real que se utiliza para representar los datos.
 Ángulo de visión: es el máximo ángulo con el que puede verse el monitor sin que se degrade demasiado la imagen. Se mide en grados.
Luminancia: es la medida de luminosidad, medida en Candela.
 Tiempo de respuesta: también conocido como latencia. Es el tiempo que le cuesta a un píxel pasar de activo (blanco) a inactivo (negro) y después a activo de nuevo.
 Contraste: es la proporción de brillo entre un píxel negro a un píxel blanco que el monitor es capaz de reproducir. Algo así como cuantos tonos de brillo tiene el monitor.
Coeficiente de contraste de imagen: se refiere a lo vivo que resultan los colores por la proporción de brillo empleada. A mayor coeficiente, mayor es la intensidad de los colores (30000:1 mostraría un colorido menos vivo que 50000:1).
 Consumo: cantidad de energía consumida por el monitor, se mide en Vatio.
Ancho de banda: frecuencia máxima que es capaz de soportar el monitor.
Hz o frecuencia de refresco vertical: son 2 valores entre los cuales el monitor es capaz de mostrar imágenes estables en la pantalla.
Hz o frecuencia de refresco horizontal: similar al anterior pero en sentido horizontal, para dibujar cada una de las líneas de la pantalla.
Blindaje: un monitor puede o no estar blindando ante interferencias eléctricas externas y ser más o menos sensible a ellas, por lo que en caso de estar blindando, o semi-blindado por la parte trasera llevara cubriendo prácticamente la totalidad del tubo una plancha metálica en contacto con tierra o masa.
Tipo de monitor: en los CRT pueden existir 2 tipos, de apertura de rejilla o de máscara de sombra.
 Líneas de tensión: son unas líneas horizontales, que tienen los monitores de apertura de rejilla para mantener las líneas que permiten mostrar los colores perfectamente alineadas; en 19 pulgadas lo habitual suelen ser 2, aunque también los hay con 3 líneas, algunos monitores pequeños incluso tienen una sola.

2.3Ventajas y desventajas


Monitores LCD

Ventajas:
·         El grosor es inferior por lo que pueden utilizarse en portátiles.
·         Cada punto se encarga de dejar o no pasar la luz.
·         La geometría es siempre perfecta, lo determina el tamaño del píxel
 Desventajas:
·         Solamente pueden reproducir fielmente la resolución nativa, con el resto, se ve un borde negro, o se ve difuminado por no poder reproducir medios píxeles.
·         Por sí solas no producen luz, necesitan una fuente externa.
·         Si no se mira dentro del cono de visibilidad adecuado, desvirtúan los colores.
·         El ADC y el CDA de un monitor LCD para reproducir colores limita la cantidad de colores representable.
·         El ADC (Convertidor Analógico a Digital) en la entrada de vídeo analógica (cantidad de colores a representar).
·         El DAC (Convertidor Digital a Analógico) dentro de cada píxel (cantidad de posibles colores representables).
·         En los CRT es la tarjeta gráfica la encargada de realizar esto, el monitor no influye en la cantidad de colores representables, salvo en los primeros modelos de monitores que tenían entradas digitales TTL en lugar de entradas analógicas.



Monitores CRT

Ventajas:
·         Distintas resoluciones se pueden ajustar al monitor.
·         En los monitores de apertura de rejilla no hay moiré vertical.
·         Permiten reproducir una mayor variedad cromática
 Desventajas:
·         Ocupan más espacio (cuanto más fondo, mejor geometría).
·         Los modelos antiguos tienen la pantalla curva.
·         Los campos eléctricos afectan al monitor (la imagen vibra).
·         Para disfrutar de una buena imagen necesitan ajustes por parte del usuario.
·         En los monitores de apertura de rejilla se pueden apreciar (bajo fondo blanco) varias líneas de tensión muy finas que cruzan la pantalla horizontalmente.

Geometría de los píxeles.


TECLADO.


En informática, un teclado es un dispositivo o periférico de entrada, en parte inspirado en el teclado de las máquinas de escribir, que utiliza una disposición de botones o teclas, para que actúen como palancas mecánicas o interruptores electrónicos que envían información a la computadora.

Después de las tarjetas perforadas y las cintas de papel, la interacción a través de los teclados, al estilo teletipo, se convirtió en el principal dispositivo de entrada para los ordenadores.
El teclado tiene aproximadamente entre 99 y 107 teclas, y está dividido en cuatro bloques:
1.     Bloque de funciones: va desde la tecla F1 a F12, en tres bloques de cuatro: de F1 a F4, de F5 a F8 y de F9 a F12. Funcionan de acuerdo al programa o aplicación que esté abierto. Por ejemplo, en muchos programas al presionar la tecla F1 se accede a la ayuda asociada a ese programa. Además, a la izquierda de este bloque suele estar la tecla Esc.
2.     Bloque alfanumérico: está ubicado en la parte inferior del bloque de funciones, contiene los números arábigos del 1 al 0 y el alfabeto organizado como en una máquina de escribir, además de algunas teclas especiales, como por ejemplo Tab  (tabulador),  Bloq Mayús (Bloq Mayús),  Mayús (teclaShift), Ctrl Win (tecla Windows), AltespaciadorAlt Gr Entrar (teclaEnter, entrar o Intro).
3.     Bloque especial: está ubicado a la derecha del bloque alfanumérico, contiene algunas teclas especiales como Impr Pant o PetSisBloq DesplPausa,<\i>InsertSuprInicioFinRePágAvPág, y las flechas direccionales que permiten mover el punto de inserción en las cuatro direcciones (,).
4.     Bloque numérico: está ubicado a la derecha del bloque especial, se activa al presionar la tecla Bloq Num, contiene los números arábigos organizados como en una calculadora con el fin de facilitar la digitación de cifras. Además, contiene el punto o coma decimal ., y los signos de las cuatro operaciones básicas: suma +, resta -, multiplicación * y división /; también contiene una tecla de Intro o  Entrar.

3.1Historia del teclado.

Además de teletipos y máquinas de escribir eléctricas como la IBM Selectric, los primeros teclados solían ser un terminal de computadora que se comunicaba por puerto serial con la computadora. Además de las normas de teletipo, se designó un estándar de comunicación serie, según el tiempo de uso basado en el juego de caracteres ANSI, que hoy sigue presente en las comunicaciones por módem y con impresora (las primeras computadoras carecían de monitor, por lo que solían comunicarse, o bien por luces en su panel de control, o bien enviando la respuesta a un dispositivo de impresión). Se usaba para ellos las secuencias de escape, que se generaban o bien por teclas dedicadas, o bien por combinaciones de teclas, siendo una de las más usadas la tecla Ctrl.
La llegada de la computadora doméstica trae una inmensa variedad de teclados y de tecnologías y calidades (desde los muy reputados por duraderos el Dragón a la fragilidad de las membranas de los equipos Sinclair), aunque la mayoría de equipos incorporan la placa madre bajo el teclado, y es la CPU o un circuito auxiliar (como el chip de sonido General Instrument AY-3-8910 en los MSX) el encargado de leerlo. Son casos contados los que recurren o soportan comunicación serial (curiosamente es la tecnología utilizada en el Sinclair Spectrum 128 para el keypad numérico). Sólo los MSX establecerán una norma sobre el teclado, y los diferentes clones del TRS-80 seguirán el diseño del clonado.
La disposición de las teclas se remonta a las primeras máquinas de escribir, que eran completamente mecánicas. Al pulsar una letra en el teclado, se movía un pequeño martillo mecánico, que golpeaba el papel a través de una cinta impregnada en tinta. Al escribir con varios dedos de forma rápida, los martillos no tenían tiempo de volver a su posición por la frecuencia con la que cada letra aparecía en un texto. De esta manera la pulsación era más lenta con el fin de que los martillos se atascaran con menor frecuencia


3.2 Clases de teclado.


Teclado multimedia
Es un teclado normal, al cual se le agregan botones referentes a el uso del cd-rom y programas multimedia de la compradora.  


Teclado flexible
Este teclado esta echo de silicona, el cual es portable debido a su elasticidad, pues se puede doblar desplegar conectar por USB y funcionar como un teclado normal.


Teclado inalámbrico
Es un teclado convencional con la diferencia de que esta conectado a la computadora a través de bluetooth, infrarrojo, etc. No necesita de un cable USB para poder fusionar.



Teclado ergonómico
Son teclados especiales para las personas que lo utilizan de una forma intensiva, donde las teclas están diseñadas para que sean presionadas con poco esfuerzo y de una manera mas simple.


Teclado braille
Es un teclado especial para las personas invidentes el cual a través de comandos es representado el carácter, cuenta con pocas teclas lo que hace que la escritura sea rápida .



Teclado virtual
Este teclado es una proyección el cual por medio de sensores y un programa controlador funciona normalmente.


Teclado touch
Es una pantalla que puedes personalizar con diversos temas y colores que muestra el teclado y otras teclas de funciones requeridas.


MOUSE O RATON.


El ratón o mouse es un dispositivo apuntador utilizado para facilitar el manejo de un entorno gráfico en una computadora. Generalmente está fabricado en plástico, y se utiliza con una de las manos. Detecta su movimiento relativo en dos dimensiones por la superficie plana en la que se apoya, reflejándose habitualmente a través de un puntero, cursor o flecha en el monitor. El ratón se puede conectar de forma alámbrica (puertos PS/2 y USB) o inalámbricamente (comunicación inalámbrica o wireless, por medio de un adaptador USB se conecta a la computadora y esta manda la señal al ratón, también pueden ser por medio de conectividad bluetooth o infrarojo).
Es un periférico de entrada imprescindible en una computadora de escritorio para la mayoría de las personas, y pese a la aparición de otras tecnologías con una función similar, como la pantalla táctil, la práctica demuestra todavía su vida útil. No obstante, en el futuro podría ser posible mover el cursor o el puntero con los ojos o basarse en el reconocimiento de voz.



4.1Historia del mouse.

Fue diseñado por Douglas Engelbart y Bill English durante los años 1960 en el Stanford Research Institute, un laboratorio de la Universidad Stanford, en pleno Silicon Valley en California. Más tarde fue mejorado en los laboratorios de Palo Altode la compañía Xerox (conocidos como Xerox PARC). Con su aparición, logró también dar el paso definitivo a la aparición de los primeros entornos o interfaces gráficas de usuario.

El 27 de abril de 1981 se lanzaba al mercado la primera computadora con ratón incluido: Xerox Star 8010, fundamental para la nueva y potente interfaz gráfica que dependía de este periférico, que fue a su vez, otra revolución. Posteriormente, surgieron otras computadoras que también incluyeron el periférico, algunas de ellas fueron la Commodore Amiga, el Atari ST, y la Apple Lisa. Dos años después, Microsoft, que había tenido acceso al ratón de Xerox en sus etapas de prototipo, dio a conocer su propio diseño disponible además con las primeras versiones del procesador de texto Microsoft Word. Tenía dos botones en color verde y podía adquirirse por 195 dólares, pero su precio elevado para entonces y el no disponer de un sistema operativo que realmente lo aprovechara, hizo que pasara completamente inadvertido.
Este periférico se popularizó con la aparición de la computadora Macintosh, en 1984. Su diseño y creación corrió a cargo de nuevo de la Universidad de Stanford, cuando Apple en 1980 pidió a un grupo de jóvenes un periférico seguro, barato y que se pudiera producir en serie. Partían de un ratón basado en tecnología de Xerox de un coste alrededor de los 400 dólares, con un funcionamiento regular y casi imposible de limpiar. Steve Jobs, quería un precio entre los 10 y los 35 dólares.
Si bien existen muchas variaciones posteriores, algunas innovaciones recientes y con éxito han sido el uso de una rueda de desplazamiento central o lateral, el sensor de movimiento óptico por diodo led, ambas introducidas por Microsoft en 1996 y 1999 respectivamente, o el sensor basado en un láser no visible del fabricante Logitech.
En la actualidad, la marca europea Logitech es una de las mayores empresas dedicadas a la fabricación y desarrollo de estos periféricos, más de la mitad de su producción la comercializa a través de terceras empresas como IBM, Hewlett-Packard, Compaq o Apple.

4.2 Tipos de mouse.


Ópticos: no usa la famosa bola de goma en la parte inferior, como el ratón común; en vez de esa bola utiliza sensores ópticos que detecta hacia donde se realiza el movimiento. Se le considera como unos de los mouse más modernos y que es más fácil su manejo.

Inalámbricos: no utiliza cables de conexión con la computadora. Sólo utiliza un receptor que se conecta a la computadora generalmente por un puerto USB; en este receptor se da el punto de concentración de la señal inalámbrica que es producida por el ratón; gracias a esta señal es que reconoce cualquier movimiento del mismo. Su uso se amolda especialmente para las computadoras portátiles y cuando no hay mucho espacio para su traslado.

Bola táctil:Para mover el apuntador con este dispositivo, el usuario coloca uno o más dedos sobre la bola.

Puntero táctil:Este dispositivo parece un borrador de lápiz y se ubica en el centro del teclado de las computadoras portátiles (laptops). Se utiliza el dedo índice para moverlo en la dirección en que se desea mover el apuntador.

Almohadilla táctil: Es una superficie sensible al movimiento y a la presión que algunas computadoras portátiles incluyen en lugar del ratón. Se utilizan las puntas de los dedos para "apuntar" y existen 1 ó 2 botones al lado de la "almohadilla" que permiten "hacer clic" y "seleccionar". La Almohadilla Táctil también recibe los nombres de Touch Pad o Track Pad en inglés.

UNIDAD CENTRAL DE PROCESAMIENTO.


Es el hardware dentro de una computadora u otros dispositivos programables, que interpreta las instrucciones de un programa informático mediante la realización de las operaciones básicas aritméticas, lógicas y de entrada/salida del sistema. El término en sí mismo y su acrónimo han estado en uso en la industria de la Informática por lo menos desde el principio de los años 1960.1 La forma, el diseño de CPU y la implementación de las CPU ha cambiado drásticamente desde los primeros ejemplos, pero su operación fundamental sigue siendo la misma.


Una computadora puede tener más de una CPU; esto se llama multiprocesamiento. Todas las CPU modernas son microprocesadores, lo que significa que contienen un solo circuito integrado (chip). Algunos circuitos integrados pueden contener varias CPU en un solo chip; estos son denominados procesadores multi núcleo. Un circuito integrado que contiene una CPU también puede contener los dispositivos periféricos, y otros componentes de un sistema informático; a esto se llama un sistema en un chip (SoC).

5.1 Historia de la CPU.

Ordenadores, como el ENIAC tenían que ser físicamente recableados para realizar diferentes tareas, que causaron que estas máquinas se llamarán "ordenadores de programas fijo". Dado que el término "CPU" generalmente se define como un dispositivo para la ejecución de software (programa informático), los primeros dispositivos que con razón podríamos llamar CPU vinieron con el advenimiento del ordenador con programa almacenado.
Las primeras CPU fueron diseñadas a medida como parte de un ordenador más grande, generalmente un ordenador único en su especie. Sin embargo, este método de diseñar las CPU a medida, para una aplicación particular, ha desaparecido en gran parte y se ha sustituido por el desarrollo de clases de procesadores baratos y estandarizados adaptados para uno o varios propósitos. Esta tendencia de estandarización comenzó generalmente en la era de los transistores discretos, computadoras centrales y microcomputadoras y fue acelerada rápidamente con la popularización del circuito integrado (IC), este ha permitido que sean diseñados y fabricados CPU más complejas en espacios pequeños en la orden de nanómetros).
Tanto la miniaturización como la estandarización de las CPU han aumentado la presencia de estos dispositivos digitales en la vida moderna mucho más allá de las aplicaciones limitadas de máquinas de computación dedicadas. Los microprocesadores modernos aparecen en todo, desde automóviles hasta teléfonos móviles o celulares y juguetes de niños.

5.2 Procesador.

Este es el cerebro del computador. Dependiendo del tipo de procesador y su velocidad se obtendrá un mejor o peor rendimiento. Hoy en día existen varias marcas y tipos, de los cuales intentaremos darles una idea de sus características principales.
Las familias (tipos) de procesadores compatibles con el PC de IBM usan procesadores x86. Esto quiere decir que hay procesadores 286, 386, 486, 586 y 686. Ahora, a Intel se le ocurrió que su procesador 586 no se llamaría así sino "Pentium", por razones de mercadeo.
Existen, hoy en día tres marcas de procesadores: AMD, Cyrix e Intel. Intel tiene varios como son Pentium, Pentium MMX, Pentium Pro y Pentium II. AMD tiene el AMD586, K5 y el K6. Cyrix tiene el 586, el 686, el 686MX y el 686MXi. Los 586 ya están totalmente obsoletos y no se deben considerar siquiera. La velocidad de los procesadores se mide en Megahertz (MHz =Millones de ciclos por segundo). Así que un Pentium es de 166Mhz o de 200Mhz, etc. Este parámetro indica el número de ciclos de instrucciones que el procesador realiza por segundo, pero sólo sirve para compararlo con procesadores del mismo tipo. Por ejemplo, un 586 de 133Mhz no es más rápido que un Pentium de 100Mhz. Ahora, este tema es bastante complicado y de gran controversia ya que el rendimiento no depende sólo del procesador sino de otros componentes y para que se utiliza el procesador. Los expertos requieren entonces de programas que midan el rendimiento, pero aun así cada programa entrega sus propios números. Cometeré un pequeño pecado para ayudar a des complicarlos a ustedes y trataré de hacer una regla de mano para la velocidad de los procesadores. No incluyo algunos como el Pentium Pro por ser un procesador cuyo mercado no es el del hogar.
Cabe anotar que los procesadores de Intel son más caros y tienen una unidad de punto flotante (FPU) más robusta que AMD y Cyrix. Esto hace que Intel tenga procesadores que funcionen mejor en 3D (Tercera dimensión), AutoCADjuegos y todo tipo de programas que utilizan esta característica. Para programas de oficina como Word, WordPerfect, etc. AMD y Cyrix funcionan muy bien.


        Algunos tipos de procesadores:

1      .       Pentium-75 ; 5x86-100 (Cyrix y AMD)
2      .       AMD 5x86-133
3      .       Pentium-90
4      .       AMD K5 P100
5      .       Pentium-100
6      .       Cyrix 686-100 (PR-120)
7      .       Pentium-120
8      .       Cyrix 686-120 (PR-133) ; AMD K5 P133
9      .       Pentium-133
1      .       Cyrix 686-133 (PR-150) ; AMD K5 P150
1      .       Pentium-150
1      .       Pentium-166
   .       Cyrix 686-166 (PR-200)






5.3 Board o tarjeta madre.



Es una tarjeta de circuito impreso a la que se conectan los componentes que constituyen la computadora.

Es una parte fundamental para armar cualquier computadora personal de escritorio o portátil. Tiene instalados una serie de circuitos integrados, entre los que se encuentra el circuito integrado auxiliar (chipset), que sirve como centro de conexión entre el microprocesador (CPU), la memoria de acceso aleatorio(RAM), las ranuras de expansión y otros dispositivos.



Componentes de la Board:
·         Conectores de alimentación de energía eléctrica.
·         Zócalo de CPU (monoprocesador) o zócalos de CPU(multiprocesador).
·         Ranuras de RAM.
·         Chipset.


Diagrama de una placa base típica.

5.4 Memoria RAM.

Se utiliza como memoria de trabajo de computadoras para el sistema operativo, los programas y la mayor parte del software.
En la RAM se cargan todas las instrucciones que ejecuta la unidad central de procesamiento (procesador) y otras unidades del computador.
Se denominan «de acceso aleatorio» porque se puede leer o escribir en una posición de memoria con un tiempo de espera igual para cualquier posición, no siendo necesario seguir un orden para acceder (acceso secuencial) a la información de la manera más rápida posible.



Historia memoria RAM.
Uno de los primeros tipos de memoria RAM fue la memoria de núcleo magnético, desarrollada entre 1949 y 1952 y usada en muchos computadores hasta el desarrollo de circuitos integrados a finales de los años 60 y principios de los 70. Esa memoria requería que cada bit estuviera almacenado en un toroide de material ferromagnético de algunos milímetros de diámetro, lo que resultaba en dispositivos con una capacidad de memoria muy pequeña. Antes que eso, las computadoras usaban relés y líneas de retardo de varios tipos construidas para implementar las funciones de memoria principal con o sin acceso aleatorio.
En 1969 fueron lanzadas una de las primeras memorias RAM basadas en semiconductores de silicio por parte de Intel con el integrado 3101 de 64 bits de memoria y para el siguiente año se presentó una memoria DRAM de 1024 bytes, referencia 1103 que se constituyó en un hito, ya que fue la primera en ser comercializada con éxito, lo que significó el principio del fin para las memorias de núcleo magnético. En comparación con los integrados de memoria DRAM actuales, la 1103 es primitiva en varios aspectos, pero tenía un desempeño mayor que la memoria de núcleos.



Las dos formas principales de RAM moderna son:
1.     SRAM (Static Random Access Memory), RAM estática, memoria estática de acceso aleatorio.
·         volátiles.
·         no volátiles:
·         NVRAM (non-volatile random access memory), memoria de acceso aleatorio no volátil
·         MRAM (magnetoresistive random-access memory), memoria de acceso aleatorio magnetorresistiva o magnética


2.     DRAM (Dynamic Random Access Memory), RAM dinámica, memoria dinámica de acceso aleatorio.
1.      DRAM Asincrónica (Asynchronous Dynamic Random Access Memory, memoria de acceso aleatorio dinámica asincrónica)
·         FPM RAM (Fast Page Mode RAM)
·         EDO RAM (Extended Data Output RAM)
2.      SDRAM (Synchronous Dynamic Random-Access Memory, memoria de acceso aleatorio dinámica sincrónica)
·         Rambus:
·         RDRAM (Rambus Dynamic Random Access Memory)
·         XDR DRAM (eXtreme Data Rate Dynamic Random Access Memory)
·         XDR2 DRAM (eXtreme Data Rate two Dynamic Random Access Memory)
·         SDR SDRAM (Single Data Rate Synchronous Dynamic Random-Access Memory, SDRAM de tasa de datos simple)
·         DDR SDRAM (Double Data Rate Synchronous Dynamic Random-Access Memory, SDRAM de tasa de datos doble)
·         DDR2 SDRAM (Double Data Rate type two SDRAM, SDRAM de tasa de datos doble de tipo dos)
·         DDR3 SDRAM (Double Data Rate type three SDRAM, SDRAM de tasa de datos doble de tipo tres)
·         DDR4 SDRAM (Double Data Rate type four SDRAM, SDRAM de tasa de datos doble de tipo cuatro)


5.5 Disco duro.

Es el dispositivo de almacenamiento de datos que emplea un sistema de grabación magnética para almacenar archivos digitales. Se compone de uno o más platos o discos rígidos, unidos por un mismo eje que gira a gran velocidad dentro de una caja metálica sellada. Sobre cada plato, y en cada una de sus caras, se sitúa un cabezal de lectura/escritura que flota sobre una delgada lámina de aire generada por la rotación de los discos. Es memoria no volátil.



Las características que se deben tener en cuenta en un disco duro son:
  • Tiempo medio de acceso: tiempo medio que tarda la aguja en situarse en la pista y el sector deseado; es la suma del Tiempo medio de búsqueda (situarse en la pista), Tiempo de lectura/escritura y la Latencia media (situarse en el sector).
  • Tiempo medio de búsqueda: tiempo medio que tarda la aguja en situarse en la pista deseada; es la mitad del tiempo empleado por la aguja en ir desde la pista más periférica hasta la más central del disco.

  • Tiempo de lectura/escritura: tiempo medio que tarda el disco en leer o escribir nueva información: Depende de la cantidad de información que se quiere leer o escribir, el tamaño de bloque, el número de cabezales, el tiempo por vuelta y la cantidad de sectores por pista.
  • Latencia media: tiempo medio que tarda la aguja en situarse en el sector deseado; es la mitad del tiempo empleado en una rotación completa del disco.

  • Velocidad de rotación: Es la velocidad a la que gira el disco duro, más exactamente, la velocidad a la que giran el/los platos del disco, que es donde se almacenan magnéticamente los datos. La regla es: a mayor velocidad de rotación, más alta será la transferencia de datos, pero también mayor será el ruido y mayor será el calor generado por el disco duro. Se mide en número revoluciones por minuto ( RPM). No debe comprarse un disco duro IDE de menos de 5400RPM (ya hay discos IDE de 7200RPM), a menos que te lo den a un muy buen precio, ni un disco SCSI de menos de 7200RPM (los hay de 10.000RPM). Una velocidad de 5400RPM permitirá una transferencia entre 10MB y 16MB por segundo con los datos que están en la parte exterior del cilindro o plato, algo menos en el interior. revoluciones por minuto de los platos. A mayor velocidad de rotación, menor latencia media.
  • Tasa de transferencia: velocidad a la que puede transferir la información a la computadora una vez que la aguja está situada en la pista y sector correctos. Puede ser velocidad sostenida o de pico.
Otras características son:
  • Caché de pista: es una memoria tipo flash dentro del disco duro.
  • Interfaz: medio de comunicación entre el disco duro y la computadora. Puede ser IDE/ATASCSISATAUSBFirewireSerial Attached SCSI
  • Lanz: zona sobre las que aparcan las cabezas una vez se apaga la computadora.
Historia del disco duro.
Al principio los discos duros eran extraíbles, sin embargo, hoy en día típicamente vienen todos sellados (a excepción de un hueco de ventilación para filtrar e igualar la presión del aire).
El primer disco duro, aparecido en 1956, fue el Ramac I, presentado con la computadora IBM 350: pesaba una tonelada y su capacidad era de 5 MB. Más grande que un frigorífico actual, este disco duro trabajaba todavía con válvulas de vacío y requería una consola separada para su manejo.
Su gran mérito consistía en el que el tiempo requerido para el acceso era relativamente constante entre algunas posiciones de memoria, a diferencia de las cintas magnéticas, donde para encontrar una información dada, era necesario enrollar y desenrollar los carretes hasta encontrar el dato buscado, teniendo muy diferentes tiempos de acceso para cada posición.

5.6 DVD.

El DVD es un tipo de disco óptico para almacenamiento de datos.Las siglas DVD1 corresponden a Digital Versátiles Disc2 (Disco Versátil Digital), de modo que ambos acrónimos (en español e inglés) coinciden. En sus inicios, la “V” intermedia hacía referencia a video (digital videodisco), debido a su desarrollo como reemplazo del formato VHS para la distribución de vídeo a los hogares.3
El estándar del DVD surgió en 1995 Consorcio (DVD Consortium).
La unidad de DVD es el dispositivo que hace referencia a la multitud de maneras en las que se almacenan los datos: DVD-ROM (dispositivo de lectura únicamente), DVD-R y DVD+R (solo pueden escribirse una vez), DVD-RW y DVD+RW (permiten grabar y luego borrar). También difieren en la capacidad de almacenamiento de cada uno de los tipos.
Los DVD se dividen en dos categorías: los de capa simple y los de doble capa. Además el disco puede tener una o dos caras, y una o dos capas de datos por cada cara; el número de caras y capas determina la capacidad del disco. Los formatos de dos caras apenas se utilizan fuera del ámbito de DVD-Video.


Historia DVD.
A comienzo de los años 1990, dos estándares de almacenamiento óptico de alta densidad estaban desarrollándose:
1.     el multimedia compact disc (MMCD), apoyado por Philips y Sony;
2.     el super density (SD), apoyado por ToshibaTime WarnerPanasonicHitachiMitsubishi ElectricPioneer,Thomson y JVC.
Philips y Sony se unieron, y acordaron con Toshiba adoptar el SD, pero con una modificación: la adopción del EFM Plus de Philips, creado por Kees Immink, que a pesar de ser un 6% menos eficiente que el sistema de codificación de Toshiba (de ahí que la capacidad sea de 4,7 GB en lugar de los 5 GB del SD original), cuenta con la gran ventaja de que EFM Plus posee gran resistencia a los daños físicos en el disco, como arañazos o huellas. El resultado fue la creación del Consorcio del DVD, fundado por las compañías anteriores, y la especificación de la versión 1.5 del DVD, anunciada en 1995 y finalizada en septiembre de 1996. En mayo de 1997, el Consorcio (DVD Consortium) fue reemplazado por el Foro DVD

5.7 Fuente de poder.

Es el dispositivo que convierte la corriente alterna (CA), en una o varias corrientes continuas (CC), que alimentan los distintos circuitos del aparato electrónico al que se conecta (computadora, televisor, impresora, router, etc.).

Las fuentes de alimentación para dispositivos electrónicos, pueden clasificarse básicamente como fuentes de alimentaciones lineales y conmutadas

Fuentes de alimentación lineales

Las fuentes lineales siguen el esquema: transformador, rectificador, filtro, regulación y salida.
En primer lugar el transformador adapta los niveles de tensión y proporciona aislamiento galvánico. El circuito que convierte la corriente alterna en corriente continua pulsante se llama rectificador, después suelen llevar un circuito que disminuye el rizado como un filtro de condensador.

Fuentes de alimentación conmutadas

Una fuente conmutada es un dispositivo electrónico que transforma la energía eléctrica mediante transistores en conmutación. Mientras que un regulador de tensión utiliza transistores polarizados en su región activa de amplificación, las fuentes conmutadas utilizan los mismos conmutándolos activamente a altas frecuencias (20-100 kHz típicamente) entre corte (abiertos) y saturación (cerrados).


5.8 Tarjetas.

Una tarjeta gráfica es una tarjeta de expansión o un circuito integrado (chip), de la placa base del ordenador, que se encarga de procesar los datos provenientes de la unidad central de procesamiento (CPU) y transformarlos en información comprensible y representable en el dispositivo de salida (por ejemplo: monitortelevisor o proyector).
También se le conoce como:
·         Adaptador de pantalla
·         Adaptador de vídeo
·         Placa de vídeo
·         Tarjeta aceleradora de gráficos
·         Tarjeta de vídeo


Las tarjetas gráficas más comunes son las disponibles para el ordenador compatibles con la IBM PC, debido a la enorme popularidad de estas, pero otras arquitecturas también hacen uso de este tipo de dispositivos

La tarjeta de video, (también llamada controlador de video, ver figura 2), es un componente electrónico requerido para generar una señal de video que se manda a una pantalla de video por medio de un cable. La tarjeta de video se encuentra normalmente en la placa de sistema de la computadora o en una placa de expansión. La tarjeta gráfica reúne toda la información que debe visualizarse en pantalla y actúa como interfaz entre el procesador y el monitor; la información es enviada a éste por la placa luego de haberla recibido a través del sistema de buses. Una tarjeta gráfica se compone, básicamente, de un controlador de video, de la memoria de pantalla o RAM video, y el generador de caracteres, y en la actualidad también poseen un acelerador de gráficos. El controlador de video va leyendo a intervalos la información almacenada en la RAM video y la transfiere al monitor en forma de señal de video; el número de veces por segundo que el contenido de la RAM video es leído y transmitido al monitor en forma de señal de video se conoce como frecuencia de refresco de la pantalla. Entonces, como ya dijimos antes, la frecuencia depende en gran medida de la calidad de la placa de video.
Es una tarjeta electrónica que se conecta una ranura que tiene la computadora (CPU, en específico la tarjeta madre) que tiene como funciones principales: la generación o reproducción de sonido y la entrada o grabación del mismo. Para reproducir sonidos, las tarjetas incluyen un chip sintetizador que genera ondas musicales. Este sintetizador solía emplear la tecnología FM, que emula el sonido de instrumentos reales mediante pura programación; sin embargo, una técnica relativamente reciente ha eclipsado a la síntesis FM, y es la síntesis por tabla de ondas (WaveTable).
En WaveTable se usan grabaciones de instrumentos reales, produciéndose un gran salto en calidad de la reproducción, ya que se pasa de simular artificialmente un sonido a emitir uno real. Las tarjetas que usan esta técnica suelen incluir una 
memoria ROM donde almacenan dichos "samples" o cortos; normalmente se incluyen zócalos SIMM para añadir memoria a la tarjeta, de modo que se nos permita incorporar más instrumentos a la misma




Historia de las tarjetas.
La historia de las tarjetas gráficas da comienzo a finales de los años 1960cuando se pasa de usar impresoras, como elemento de visualización, a utilizar monitores. Las primeras tarjetas sólo eran capaces de visualizar texto a 40x25 u 80x25, pero la aparición de los primeros chips gráficos como el Motorola 6845 permiten comenzar a dotar a los equipos basados en bus S-100 o Eurocard de capacidades gráficas. Junto con las tarjetas que añadían un modulador de televisión fueron las primeras en recibir el término “tarjeta de video”.
El éxito del ordenador doméstico y las primeras videoconsolas hacen que por abaratamiento de costes (principalmente son diseños cerrados), esos chips vayan integrados en la placa base. Incluso en los equipos que ya vienen con un chip gráfico se comercializan tarjetas de 80 columnas, que añadían un modo texto de 80x24 u 80x25 caracteres, principalmente para ejecutar softCP/M (como las de los Apple II y Spectravideo SVI-328).